Lichens of the Rancho Marino and Los Osos Oaks Reserves, San Luis Obispo County, California

Jesse E. D. Miller¹, Jason Hollinger², and Tom Carlberg³

¹Stanford University, Stanford, California 94305, jedmiller@ucdavis.edu

²The Great Basin Institute, Reno, Nevada 89311, pellaea@gmail.com

³California Academy of Sciences, San Francisco, California, 94118, tcarlberg@calacademy.org

ABSTRACT

Several California Lichen Society members and friends explored the lichen communities of coastal San Luis Obispo County, California, on a foray in March, 2018. Lichen observations were focused on two areas: the University of California Kenneth Norris Rancho Marino Reserve in Cambria, California, and the Los Osos Oaks State Natural Reserve near Morro Bay, California. Coastal San Luis Obispo County represents an important region for lichen conservation because it contains diverse lichen communities with a number of rare species, and remnants of lichen habitats that have been fragmented by urban development. This foray highlights the conservation value of numerous coastal habitats for lichen diversity. Coastal chaparral, hypermaritime rocky shorelines, and undisturbed vegetated dune systems in particular host a notable number of rare and endemic lichen species.

Introduction

California's central and south coast provides habitat for diverse lichen communities, including a number of rare species (Carlberg & Knudsen 2007, Hasse 1916, Herre 1907, Knudsen & Kocourková 2011, Knudsen & Lendemer 2006, 2007). Numerous coastal southern California lichens are considered species of conservation concern (i.e. *Sulcaria spiralifera, Graphis*

saxorum, Mobergia calculiformis; California Native Plant Society 2018) in part because urban development has caused extensive fragmentation of natural habitats (e.g., McCune and Schoch 2009). Further, shrublands that provide some of the most important lichen habitat in southern California are sensitive to wildfire, and increases in fire frequencies in California threaten lichen populations (Knudsen and Magney 2006, Miller et al. 2018). Despite these concerns, the diversity and distributions of lichen communities on the south-central coast remain incompletely understood, and further research to document species ranges and population vigor is needed.

Figure 1. Coastal sage scrub habitat at the Rancho Marino Reserve.

Several California Lichen Society members and friends explored the lichen communities of coastal San Luis Obispo County, California, on a foray in March, 2018. Lichen observations were focused on two areas: the University of California Ken Norris Rancho Marino Reserve in Cambria, California (hereafter Rancho Marino), and the Los Osos Oaks State Natural Reserve near Morro Bay, California (hereafter Los Osos).

Rancho Marino is a 202 hectare (500 acre) UC Reserve that stretches for two miles southward along the coast from the small town of Cambria, and inland from the coast to the first major ridgeline at 213 meters (700 feet) elevation. The Reserve contains several distinct habitat types, most prominently, from a lichenologist's perspective, Monterey pine (Pinus radiata) and live oak (Quercus agrifolia) forest, and coastal sage scrub (Figure 1), dominated by California sagebrush (Artemisia californica) and poison oak (Toxicodendron diversilobum). The reserve also contains a substantial coastal prairie, which is dominated by annual grasses. Old wooden fence posts throughout the preserve provide substrate for a remarkably diverse assortment of lichens (Figure 2), and a number of lichen species were found growing on sandstone in the

Figure 2. Old wooden fence post covered in lichens at the Rancho Marino Reserve.

salt-spay zone on the immediate coast, as well as on low-lying sandstone outcrops on steep slopes in the vicinity of the coastal sage scrub community.

Figure 3. Epiphytic lichens are abundant in the old growth coastal chaparral at the Los Osos Oaks Reserve.

At Los Osos, we primarily explored lichens in a coastal chaparral habitat, a shrubland community that is distinct from coastal sage scrub both in terms of dominant vascular plants and lichen species composition. The old growth coastal chaparral at Los Osos is dominated by buckbrush (*Ceanothus cuneatus*) and chamise (*Adenostoma fasciculatum*). The *Ceanothus* at Los Osos are clearly quite old, with stout stems sometimes taking on an almost arboreal appearance. Lichen biomass is high on the shrubs at Los Osos (Figure 3), and a number of rare and exciting lichen species were encountered (Figure 4).

Below, we present accounts of species of particular interest that were encountered at Rancho Marino and Los Osos (Figure 5 and back cover photos). We also present a full list of species we encountered at Rancho Marino. Since our explorations at Los Osos were limited to a small portion of the Reserve, we do not include a full species list for Los Osos.

INTERESTING SPECIES

Buellia oidalea (Nyl.) Tuck., at Rancho Marino (back cover). This conspicuous, handsome Buellia was growing happily all over a few weathered Monterey pine logs on the hillside above the field station. (We found it also on twigs in the chaparral at Los Osos.) It probably wouldn't be considered uncommon, but it does have a very narrow range, confined to the coast from Oregon to Baja. It is a delight to put under the scope, because it has strikingly large muriform spores (oddly, with somewhat paler tips), densely inspersed hymenium, and a satisfying C+ orange reaction owing to presence of xanthones.

Collemopsidium foveolatum (A. L. Sm.) F. Mohr, at Rancho Marino. Check those barnacles in the tidal zone! Ken and Jason scoured the point near the Rancho Marino field station and found quite a few populations of limpets with tiny pits in their shells. We dutifully pried a few off and brought them back to the lab, but failed to detect any algae. We foolishly concluded that these were unlichenized, perhaps a parasitic Ascomycete similar to *Stigmidium*. But apparently that isn't uncommon with this species, which has such a scant thallus and its perithecia are completely immersed in little pits etched in the host's shell. McCune (2017) has a photo on p. 43.

Heterodermia namaquana Breuss, at Los Osos (Figure 5c). There were quite a number of tiny specimens of this cute little species on twigs in the old growth coastal chaparral at Los Osos. In the field the cilia are conspicuous. It is much more compact and shrubby than the more widespread *H. leucomela* (which is also present at Los Osos). Both species seemed abnormally dwarfed at this location. *H. namaquana* is found only along the coast of southern California, Baja California and South Africa.

Hypogymnia minilobata McCune & Schoch, at Los Osos. What a treat to see this species at its type locality! It is reminiscent of *H. occidentalis*, but like many things in the coastal chaparral, oddly dwarfed. *H. minilobata* is known only from a handful of coastal locations from San Luis Obispo to San Diego. Note especially its abundant gaping perforations at the lobe tips.

Hypogymnia mollis L.H. Pike & Hale, at Los Osos (back cover). This species is characteristic of coastal chaparral in southern California and Baja California. According to McCune (2009) it may be most closely related to *H. minilobata*. However, *H. mollis* has abundant soft laminal soredia (*H. minilobata* has no soredia and is usually fertile instead). It is also a good deal more common. Los Osos is the type locality for this species, where it is common on twigs in coastal chaparral (Pike and Hale, 1982).

Lecanora expallens Ach., at Rancho Marino. This species is fairly rare on the southern California coast. (Judging by google search results, it must be more common in the British Isles.) We found it by the field station - just two small patches on a Monterey cypress (Hesperocyparis macrocarpa) twig. Like most rare things, it

Figure 4. Lichen enthusiasts can scarcely restrain themselves from diving into the chaparral at Los Osos upon discovering a population of the rare Sulcaria isidiifera.

was, of course, collected by accident! (With an unremarkable specimen of *Buellia punctata* in this case.) It is a thin sorediate crust which produces usnic acid. Because its nonsorediate thallus is endophloedic and the soralia are confluent, it appears to be essentially leprose in the field. It is usually mistaken for a *Lepraria* or *Pyrrhospora quernea*. Chemistry is the only way to reliably identify sterile specimens. In addition to usnic acid, *L. expallens* contains zeorin and the xanthone thiophanic acid (C+ orange). Our specimen gave only a very weak, ambiguous C reaction, so it should be considered tentative until confirmed with thin-layer chromatography.

L. simeonensis K. Knudsen & Lendemer, at Rancho Marino (Figure 5d). There was a thriving fertile population of this on weathered Monterey pine logs on the hillside above the field station. Like L. expallens (see above), it is a sorediate, usnic acid-containing Lecanora. However this species has a well-developed rimose-areolate thallus, forms capitate soralia and lacks xanthones (C-). It was described only recently by Lendemer and Knudsen (2009) from San Simeon State Park just four miles to the north.

Melanelixia subaurifera (Nyl.) O. Blanco et al., at Rancho Marino (Figure 5e). On fence wood at a cattle crossing. A widespread and common brown parmelioid lichen in temperate and boreal regions of the Western Hemisphere, M. subaurifera reaches the southwestern limits of its range in Southern California. This is not the most southerly report for this species, but there are very few reports further south in California; from Morro Bay, Hollister Ranch, Santa Barbara, the mountains above Los Angeles, and in Arizona from the Santa Rita Mountains south of Tucson.

Micarea nitschkeana (J. Lahm ex Rabenh.) Harm., at Los Osos (Figure 5f). This was found growing on a twig in the coastal chaparral. It is a tiny button crust, distinguished from the very similar *M. denigrata* by having 3-septate spores instead of 1-septate spores and typically growing on twigs instead of wood (Fryday and Coppins 2007). While very widespread, occurring in Asia, Europe and even Tasmania, this species appears to be rare in coastal California, with only a handful of records from Sonoma County to the Channel Islands. Our specimen was collected accidentally with *Hypogymnia mollis*, so perhaps it is merely overlooked.

Opegrapha sp., at Rancho Marino (Figure 5g and back cover). In California, Opegrapha is generally found on trees, so when we found this striking black lirellate lichen growing on sandstone in the spray zone below the field station, we knew it was something interesting. Our specimen has 5-septate spores $15-17 \times 4-5 \mu m$, often-branched apothecia ca. 1.0 × 0.3 mm, with slit-like disk and distinctively cracked exciple. The only species known from California with 5septate spores that size is *O. xerica*, however that species has unbranched apothecia and grows on trees. O. brattiae and occasionally O. herbarum will grow on rocks, however they both have 3-septate spores (Ertz and Egea 2007). In the British Flora, Pentecost and James (2009) discuss *O. cesareensis*, which looks very similar and grows in the right habitat (the "xeric supralittoral zone"). However, they stress a characteristic lilac tinge in the thallus of their material (ours has entirely endolithic thallus), and photos and descriptions make no mention of the cracked exciple seen in our specimen. This specimen clearly requires further research.

Pachnolepia pruinata (Pers.) Frisch & G. Thor, at Rancho Marino. We found two beautiful spe-

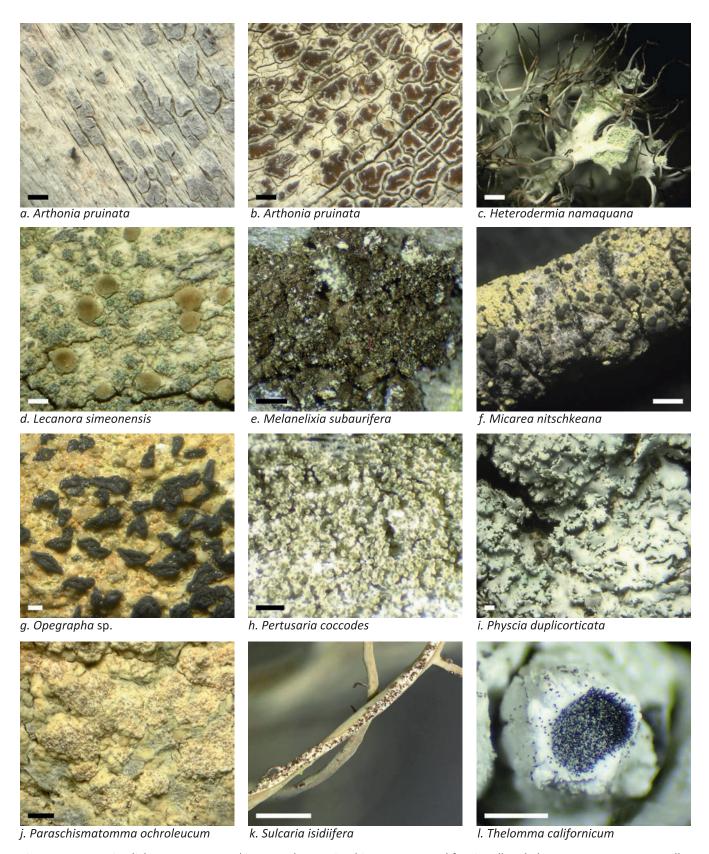


Figure 5. Interesting lichens encountered in coastal San Luis Obispo County, California. All scale bars represent 0.5 mm. All photos by Jason Hollinger, except for e, h, and I by Tom Carlberg.

cimens of this growing on fence posts near the field station that could scarcely have looked more different in the field. One was heavily pruinose with scattered cracked apothecia, the other was epruinose with dense polygonal apothecia. However, both have *Trentepohlia*, are C+ bright red, and have I+ red hymenium and 4-septate, ovoid, $\sim 15 \times 5 \mu m$ spores. According to Grube (2007), this is the most common species of *Arthonia* sensu lato in the region.

Paraschismatomma ochroleucum (Zahlbr.) K. Knudsen, Ertz & Tehler, at Rancho Marino (back cover). This white, sorediate crust was abundant on Monterey cypress near the sea. It is characterized by the presence of *Trentepohlia* as its photobiont, lecanoric acid (C+ bright red) and verruculose thallus. The soralia are initially discrete, but become confluent in age, eventually essentially covering the entire thallus. The soredia darken from white in the shade to peppered-gray in exposed situations. One of our specimens (Hollinger 19834) was fertile, however no mature spores were seen. Compare with *Schizopelte crustosa* below.

Pertusaria coccodes (Ach.) Nyl., at Rancho Marino (Figure 5h). On wood of a down Monterey pine log in an open field. A rare lichen for California! A diminutive off-white crust whose thallus is barely visible through the forest of brown-tipped isidia which comprises most of what you see in the field. It has 45 synonyms listed in the Consortium of North American Lichen Herbaria (CNALH 2018). This species has an oceanic distribution, and appears most frequently (74% of reported global records) in Norway, Sweden, Denmark, and Germany, but rare in in the United States (9% of reported records) and extremely rare in California (1.5%). In northern California it might easily be mistaken for Loxosporopsis corallifera

Brodo, Henssen & Imshaug, which has proportionately longer and more cylindrical isidia than *P. coccodes*. The two species also differ chemically and in their responses to UV light; *P. coccodes* is K+ red, UV-, and *L. corallifera* is K-, UV+ off-white. See Tucker (2017) for additional analysis and comparisons.

Physcia duplicorticata Weber & Thomson, at Los Osos (Figure 5i). This was found growing on the leaning bole of a large live oak. This relatively rare coastal California endemic has been discussed recently in the CALS bulletin by Knudsen et al (2016) and Esslinger (2017). It is primarily known from around the Bay Area; it was described by Weber and Thomson (1975) from Point Reyes. Knudsen et al (2016) reported it from the Santa Monica Mountains.

Schizopelte crustosa Ertz & Tehler, at Rancho Marino. We found one specimen of this on Monterey pine bark on the hill above the field station. It is very similar in some ways to Paraschismatomma ochroleucum, especially when sorediate. Both have Trentepohlia, lecanoric acid (C+ bright red), white thallus, and multiseptate spores. However, S. crustosa has shorter, less-septate spores which turn brown in age. When sterile, S. crustosa can be distinguished from P. ochroleucum by having a smoother (less verruculose) thallus. Both species are endemic to the southern California and Baja California coast.

Sulcaria isidiifera Brodo, at Los Osos (Figure 5k and back cover). This is the crown jewel of Los Osos. This spectacular, narrowly endemic hair lichen is known from only a handful of localities in this region. We thrashed through the dense old growth chaparral for some time looking for it. We were fooled repeatedly by the similar-looking *S. spiralifera* before we finally

stumbled on the type population. Both species grow deep within the shelter of old growth chamise (*Adenostoma*) and mountain mahogany (*Cerco-carpus*), often requiring a distinct disregard for clothing and dignity to get a close enough look to check for the characteristic, striking isidia which line the long, twisting pseudocyphellae of *S. isidiifera*. Additionally, *S. isidiifera* tends to be a bit more shrubby, coarser, and perhaps on average paler than *S. spiralifera*. By contrast, *S. spiralifera* tended to have a slightly more reddish tinge and somewhat finer more pendulous branches which matted together a little.

Sulcaria spiralifera (Brodo & D. Hawksw.) Myllys, Velmala & Goward, at Los Osos. At any other site, where not overshadowed by *S. isidiifera*, this species would be a rare and noteworthy find! It is found only in scattered sites along the coast from California to Washington. It is separated from the similar *S. badia* by the presence of norstictic acid (in Los Osos Oaks material; K+ yellow turning red and producing abundant needle-shaped crystals in a squash mount) or alectorialic and barbatolic acids (the *Bryoria pseudocapillaris* chemotype) and shorter pseudocyphellae (Myllys et al. 2014). *S. badia* contains only atranorin (K+ yellow, KC-, P- or very weak, slow yellow).

Thelomma californicum (Tuck.) Tibell, at Rancho Marino (Figure 51 and back cover). On a wood fence post of the eastern boundary fence of Rancho Marino. A not uncommon species restricted (mostly) to the West Coast of North America, from Humboldt Bay to Baja California (but see also Knudsen 15833 UCR-242148 (CNALH 2018), in the southern Sierra Nevada Mountains). The asci disintegrate as the spores mature, forming an apothecium that is a loose powdery mass of spores (a mazaedium).

AUTHORSHIP STATEMENT

JM organized the foray and all authors attended and contributed to lichen identifications; JH (and Ken Kellman) performed the vast majority of the identifications. JM wrote the first draft of the introduction to the paper. JH and TC wrote the first drafts of the species accounts. All authors contributed to editing and revising the entire paper.

ACKNOWLEDGEMENTS

Ken Kellman contributed significantly to the species lists presented in this paper. We are grateful to Don Canestro and Rancho Marino for welcoming us to the Reserve and supporting this project, and we thank Los Osos for allowing us to collect lichens. Don Canestro, the Reserve Manager at Rancho Marino, died unexpectedly shortly after this project was completed. He stewarded the Reserve for almost two decades, facilitating a great variety of research and sharing expert ecological knowledge with many visitors. He will be greatly missed.

REFERENCES

California Native Plant Society, Rare Plant Program. 2018. Inventory of Rare and Endangered Plants of California (online edition, v8-03 0.39). Website http://www.rareplants.cnps.org [accessed 31 October 2018].

Consortium of North American Lichen Herbaria. 2018. http://lichenportal.org/portal. Accessed on 30 October 2018.

Carlberg, T. & K. Knudsen. 2007. *Sulcaria isidiifera*, Sponsorship for the CALS Conservation Committee. Bulletin of the California Lichen Society 14 (2): 45–47.

Ertz, D. & J.M. Egea. 2007. Opegrapha In: T.H. Nash, III, C. Gries & F. Bungartz: Lichen Flora of the Greater Sonoran Desert Region. Volume 3. Lichens Unlimited, Arizona State University, Tempe, pp. 255–266.

- Esslinger, T.L. 2017. *Physcia millegrana* can be excluded as an adventive in California. Bulletin of the California Lichen Society 24(1): 19–21.
- Fryday, A.M. & B.J. Coppins. 2007. Micarea In: T.H. Nash, III, C. Gries & F. Bungartz: Lichen Flora of the Greater Sonoran Desert Region. Volume 3. Lichens Unlimited, Arizona State University, Tempe, pp. 246–250.
- Grube, M. 2007. Arthonia In: T.H. Nash, III, C. Gries &
 F. Bungartz: Lichen Flora of the Greater Sonoran
 Desert Region. Volume 3. Lichens Unlimited, Arizona State University, Tempe, pp. 39–61.
- Hasse, H. E. 1916. The lichen flora of southern California 17:1. Govt. Print. Off.
- Herre, A..W.C.T. 1907. Lichen distribution in the Santa Cruz Peninsula, California. Botanical Gazette 43(4):267–273.
- Knudsen, K., T.L. Esslinger & T. Wheeler. 2016. *Physcia duplicorticata* rediscovered in the Santa Monica
 Mountains. Bulletin of the California Lichen Society 23(1): 13–15.
- Knudsen, K., and J. Kocourková. 2011. Rare lichens of the southern California chaparral. The Chaparralian 8(1): 10–12.
- Knudsen, K. & J.C. Lendemer. 2007. *Cladonia firma*,Sponsorship for the CALS Conservation Committee.Bulletin of the California Lichen Society 14 (2):40–44.
- Knudsen, K. & J.C. Lendemer. 2006. *Cladonia firma* in San Luis Obispo County, California. Bulletin of the California Lichen Society 13 (2): 29–34.
- Knudsen, K., and D. Magney. 2006. Rare lichen habitats and rare lichen species of Ventura County, California. Opuscula Philolichenum 3: 49–52.
- Lendemer, J.C. & K. Knudsen. 2009. Two new usnic acid containing species of *Lecanora* from western North America. Opuscula Philolichenum 6: 73–80.
- McCune, B. 2017. Microlichens of the Pacific Northwest: Volume 1 Key to the genera. Wild Blueberry media LCC, Corvallis, Oregon. 218 pp.

- McCune, B. 2017. Microlichens of the Pacific Northwest. Volume 2: Keys to the species. Wild Blueberry Media, Corvallis, Oregon, USA. 755 pp.
- McCune, B., and C. Schoch. 2009. *Hypogymnia minilobata* (Parmeliaceae), a new lichen from coastal California. The Bryologist 112:94–100.
- Miller, J. E. D., H. T. Root, and H. D. Safford. 2018.

 Altered fire regimes cause long term lichen diversity losses:1–11.
- Myllys, L., S. Velmala, H. Lindgren, D. Glavich, T. Carlberg, L.S. Wang & T. Goward. 2014. Taxonomic delimitation of the genera *Bryoria* and *Sulcaria*, with a new combination *Sulcaria spiralifera* introduced. The Lichenologist 46(6): 737–752.
- Pentecost, A. & P.W. James. 2009. *Opegrapha* In: C.W. Smith, A. Aptroot, B.J. Coppins, Fletcher, O.L. Gilbert, P.W. James & P.A. Wolseley. The Lichens of Great Britain and Ireland. The British Lichen Society, London, pp. 631–647.
- Pike, L.H. & M.E. Hale, Jr. 1982. Three new species of *Hypogymnia* from western North America (Lichenes: Hypogymniaceae). Mycotaxon 16: 157–161.
- Tucker, S.C. 2017. Rare Lichens Collected in California by Judith (Judy) and Ron Robertson. Evansia 34:3; 74–84
- Weber, W.A. & J.W. Thomson. 1975. *Physcia duplicorticata* Weber & Thomson sp. nov. from California. Mycotaxon 3: 102–104.

Appendix. Lichen species encountered at the University of California Ken Norris Rancho Marino Reserve in San Luis Obispo County, California. Species without collection numbers were observed but not collected. All collections have been retained in the authors' personal herbaria, and duplicates of some KMK collections have also been deposited at UCSC. JH=Jason Hollinger, KMK=Ken Kellman, and TC=Tom Carlberg.

Taxon	Authorities	Collection number
Acarospora socialis	H. Magn.	JH 19822, KMK 8867
Amandinea punctata	(Hoffm.) Coppins & Scheid.	JH 19827, KMK 8841, TC 05641
Arthonia pyrrhuliza	Nyl.	TC 05658
Aspicilia pacifica	Owe-Larss. & A. Nordin	JH 19819a, 19821
Athallia pyracea	(Ach.) Arup, Frödén & Søchting	JH 19828
Buellia abstracta	(Nyl.) H. Olivier	JH 19813
Buellia cf. halonia	(Ach.) Tuck.	JH 19812
Buellia oidalea	(Nyl.) Tuck.	KMK 8856, JH 19839
Buellia pullata	Tuck.	JH 19811
Buellia stellulata	(Taylor) Mudd	JH 19811, 19818
Calicium abietinum	Pers.	KMK 8842, JH 19807
Calicium glaucellum	Ach.	KMK 8853
Calicium tigillare	(Ach.) Pers.	
Caloplaca saxicola	(Hoffm.) Nordin	JH 19823
Chrysothrix xanthina	(Vainio) Kalb	JH 19837
Cliostomum griffithii	(Sm.) Coppins	JH 19809, TC 05656
Collemopsidium foveolatum	(A. L. Sm.) F. Mohr	
Dimelaena radiata	(Tuck.) Müll. Arg.	JH 19811, 19819
Diploicia canescens	(Dickson) A. Massal.	
Diploschistes muscorum	(Scop.) R. Sant.	JH 19817
Evernia prunastri	(L.) Ach.	
Flavoparmelia caperata	(L.) Hale	
Flavopunctelia flaventior	(Stirton) Hale	TC 05638
Heterodermia leucomela	(L.) Poelt	
Hypogymnia enteromorpha	(Ach.) Nyl.	TC 05639
Hypogymnia heterophylla	L. Pike	KMK 8854
Lecania cf. Franciscana	(Tuck.) K. Knudsen & Lendemer	JH 19792, 19793
Lecania cf. Pacifica	Zahlbr. ex B.D. Ryan & van den Boom	
Lecanora caesiorubella	Ach.	JH 19830, TC 05636
Lecanora confusa	Almb.	JH 19838
Lecanora expallens	Ach.	JH 19827
Lecanora simeonensis	K. Knudsen & Lendemer	JH 19841
Lecidella asema	(Nyl.) Knoph & Hertel	JH 19814
Lecidella scabra	(Taylor) Hertel & Leuckert	JH 19815
Lichenostigma maureri	Hafellner	JH 19808
Lichenostigma subradians	Hafellner, Calatyud & NavRos.	JH 19822
Melanelixia subaurifera	(Nyl.) O. Blanco et al.	TC 05663
Micarea denigrata	(Fr.) Hedl.	JH 19842

Appendix, continued...

Taxon	Authorities	Collection number
Mycocalicium subtile	(Pers.) Szatala	
Myriolecis dispersa	(Pers.) Śliwa, Zhao Xin & Lumbsch	JH 19816
Niebla cephalota	(Tuck.) Rundel & Bowler	
Ochrolechia arborea	(Kreyer) Almb.	TC 05652
Opegrapha erosa	Egea & Ertz	TC 05659
Opegrapha herbarum	Mont.	JH 19824
Opegrapha niveoatra	(Borrer) J.R. Laundon	JH 19825
Opegrapha sp.		JH 19794
Opegrapha xerica	Torrente & Egea	KMK 8840
Pachnolepia pruinata	(Pers.) Frisch & G. Thor	KMK 8870
Paraschismatomma ochroleucum	(Zahlbr.) K. Knudsen, Ertz & Tehler	JH 19826, 19834, 19835
Parmotrema hypoleucinum	(Steiner) Hale	
Pertusaria coccodes	(Ach.) Nyl.	TC 05646
Physcia phaea	(Tuck.) J.W. Thomson	KMK 8865
Placynthiella uliginosa	(Schrader) Coppins & P. James	
Polycauliona candelaria	(L.) Frödén, Arup, & Søchting	KMK 8868b
Polycauliona ludificans	(Arup) Arup, Frödén & Søchting	KMK8864
Polycauliona luteominia	(Tuck.) Arup, Frödén & Søchting	KMK 8842, JH 19791, 19812
Pseudothelomma ocellatum	(Körber) M. Prieto & Wedin	KMK 8869; JH 19832
Pyrrhospora quernea	(Dickson) Körber	JH 19840
Ramalina canariensis	J. Steiner	
Ramalina farinacea	(L.) Ach.	
Ramalina leptocarpha	Tuck.	
Ramalina menziesii	Tuck. non Taylor	
Ramalina pollinaria	(Westr.) Ach.	
Ramalina subleptocarpha	Rundel & Bowler	
Rinodina gennarii	Bagl.	JH 19812
Sarcogyne regularis	Körber	KMK 8874
Schizopelte crustosa	Ertz & Tehler	JH 19806
Stigmidium epixanthum	Hafellner	JH 19822
Thelomma californicum	(Tuck.) Tibell	KMK 8859, TC 05637
Thelomma mammosum	(Hepp) A. Massal.	JH 19818
Trapeliopsis flexuosa	(Fr.) Coppins & P. James	TC 05657
Usnea fragilescens	Hav. ex Lynge	
Usnea perplexans	Stirton	
Usnea rubicunda	Stirton	
Verrucaria acrotella	Ach.	JH 19811
Verrucaria calkinsiana	Servít	JH 19812
Verrucaria prominula	Nyl.	JH 19795
Verrucaria viridula	(Schrader) Ach.	JH 19821

Lichens from Rancho Marino and Los Osos Oaks

Some of the interesting lichens encountered by CALS members and friends in coastal San Luis Obispo County, California. All scale bars represent 0.5 mm. All photos by Jason Hollinger.

Thelomma californicum loves fence posts

Hypogymnia mollis at its type locality

Buellia oidalea on Monterey pine logs

Paraschismatomma ochroleucum on Monterey cypress logs

Sulcaria isidiifera at its type locality; a very narrow endemic

An unknown Opegrapha sp. on sandstone in the spray zone